Choices and the Uncertainty Principle cont.

The reason that the laws of general relativity break down at the Big Bang is that it does not incorporate the most basic tenet of quantum theory – the uncertainty principle – the element that Einstein could never accept.

Choices and the Uncertainty PrincipleQuantum theory tells us that the very early Universe must have had a multitude of choices. It could have formed a black hole, there could have been no expansion of the Universe, the strength of gravity could have been stronger or weaker and there could have been no matter in the Universe, only radiation. All of these choices would have resulted in a still-born Universe.

The multitude of choices and resulting uncertainties form the basis of quantum theory. But the Universe, as big as it is today, is still subject to the uncertainties. It is like a gambler throwing the dice – there are a large number of possible rolls of the dice. It is interesting to note that in a large object such as the Universe, the multitude of choices average out to something we can predict. That is why we can apply Einstein’s theory so successfully to the Universe as a whole.

Scientists also refer to the multitude of choices as multiple histories. The well-known American theoretical physicist, Richard Feynman, has developed a mathematical framework to calculate the most probable outcome of multiple histories. The same formulae can be applied to determine the most likely position of an electron. Again, the closer we determine an electron’s position, the larger its velocity will be.

The uncertainties of the quantum world are not imaginary; they are real. Feynman’s multiple histories idea of the Universe is now incorporated into general relativity to form a unified theory which could be used to calculate how the Universe will develop if we know how the histories started.

Uncertainty Principle and Perceptions of Time

What does quantum theory tell us about time in the Universe? Time does not exist in quantum theory! At least it does not exist in the sense that most of us think about it. There is no clock out there ticking no matter what happens in the Universe. Time in quantum theory is simply the measurement of a process, like the decay of radioactive matter.

Clocks developed to measure such processes cannot measure any duration of time smaller than a billionth-billionth of a second. This is more or less the size of an atom or, more precisely, the time it will take a photon to cross the size of an atom. This interpretation of time is in line with Einstein’s general relativity. Measurement of the duration of processes at the quantum level is subject to the uncertainties and fuzziness typical of quantum theory.

We cannot measure the duration of time it takes a particle to acquire a certain amount of energy. The more accurately we measure the energy, the less accurate can we measure the time it took the particle to gain the energy. This is why the formation of particles (matter) in the early Universe is subject to the uncertainty principle of quantum mechanics.

Uncertainty Principle: Feeling Uncertain?

People do not like uncertainties and therefore most do not like quantum mechanics. As a scientist put it: “I do not like quantum mechanics, but I use it because it works”. The velocity of particles in the early Universe must have been incredibly high due to the high energy levels. If you use such a particle to determine time, you would find that a particle traveling at the speed of light gives you the age of the Universe as NIL.

All particles must have been traveling at very close to the speed of light. It becomes clear that every particle had its own time. Whose time is correct? All readings of time are correct depending on your velocity and the gravitational pull. Einstein said: “every observer’s time is correct”. There is no intrinsic unchanging time.

Uncertainty Principle: What is Reality?

I want to end with a few thoughts about our relationship at the macroscopic level with the microscopic world. In everyday life you never see a single photon and the microscopic world seems so remote and unreal. If you think further, you realize that almost everything in our everyday world is the way it is because of the quantum world. Matter has bulk because atoms have size. The colours, textures, hardness and the transparency of materials all depend on the exclusion principle regulating the behaviour of electrons in atoms. The list could go on, but ultimately the macroscopic world is what it is because of the microscopic world.

The quantum world is not something remote. It forms part of all matter. Take this page; look at it at ever smaller distances and time scales and the apparent mad world I have described above will unfold before your eyes. The problem is, currently we can only access the quantum world theoretically because technology has not developed so far that we can access it in any other way.

Frikkie de Bruyn is the Director of the Cosmology
Section of the Astronomical Society of Southern Africa

Related Articles:

  • Perceptions of Time
  • What happened before the Big Bang?
  • The evolution of stars in the Universe

Galen

Galen (name), meaning: "Curious One". A lover of language, human ingenuity and the forces of the universe. Hugely drawn towards the mysterious and unknown. Regular laughter and escapism essential.

You may also like...

Leave a Reply